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ELECTROCHEMICAL REDUCTION REACTIONS INVOLVING FORMIC ACID

M. H. Miles, A. N. Fletcher, and G. E. McManis

Research Department, Naval Weapons Center,

China Lake, California 93555

INTRODUCTION

Electrochemical reduction provides a means of activating carbon

dioxide for the production of fuels and organic chemicals. The elec-

trode reduction of CO2 in water using metal electrodes yields formic

acid and formate ions as the main products 11-71, i.e., CO2 + H20 + 2 e

HCO2  + OH Previous studies have shown that the further reduction

of formic acid to methanol at metal electrodes occurs only in a narrow

potential range and at impractically small current densities [2,71.

Cyclic voltammograms reported for TiO 2 electrodes in N 2-saturated KCI

solutions show increasing cathodic currents with increasing concentra-

tions of formic acid [8]. Furthermore, the direct reduction of CO2 to

methanol is reported for TiO 2-Ru cathodes [9]. Augustynski and co-

workers [8] claim that the reduction of formic acid takes place at

potentials positive to hydrogen evolution on TiO 2 electrodes. This con-

flicts with conclusions by Tinnemans et al. [10] who claim that neither

formic acid nor formate ion is the electroactive species being reduced.
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These authors propose instead that the cathodic currents observed result

from local pH changes at the TiO 2/solution interface and involve the

buffering action of the formic acid/formate system [10. This explana-

tion has been rejected by Augustynski [11].

Our potential scan experiments in NaCIO 4 solutions at a constant pH

have revealed that the addition of sodium formate under mildly acidic

conditions increases the cathodic current on a variety of metal elec-

trodes. Detailed studies are reported here for experiments conducted

using platinum electrodes.

EXPERIMENTAL SECTION

Solutions (1.0 M) were prepared by dissolving 7.02 g NaCI04 "H20 in

50 ml of deionized water. The desired formic acid/formate concentra-

tions were produced by additions of NaCOOH and HC104. The platinum wire

working electrode (d = 0.1 cm, 1 = 0.7 cm, A = 0.22 cm2 ) was constructed

by using heat shrink Teflon to seal the wire in glass tubing. Exhaus-

tive electrolysis experiments used a large platinum sheet electrode

(A = 50 cm 2). The platinum counter electrode was isolated from the

main compartment of the beaker-type cell by a section of glass tubing

with an ultra-fine glass frit at the bottom. All potentials were

measured against a saturated calomel electrode (SCE). Electrochemical

measurements were always made in helium-saturated solutions.
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The solution pH was monitored using the palladium-hydrogen (Pd-H)

electrode prepared as described by Gileadi [12). This electrode was

calibrated by measuring its potential versus SCE in standard buffer

solutions (Van-Lab, pH 4, 7 and 10). The experimental relationship of

pH and potential (E) of the Pd-H electrode versus SCE at 230 C was deter-

mined to be

pH = -(E + 0.2031)/O.0575 ()

Adjustments of the pH were generally made by adding measured amounts of

0.50 M HCIO to the solutions. Occasionally, the pH was adjusted upward

by the use of NaOH solutions.

Cyclic voltammetric studies involved the use of a potentiostat/

galvanostat, current-to-voltage converter, and programmer (PAR Models

173, 176, and 175) in conjunction with an X-Y recorder (Hewlett-Packard

7047 A). A strip chart recorder (HP 7100 B) was also used in exhaustive

electrolysis studies. The Pd-H versus SCE potentials were measured with

both the PAR potentiostat and a digital multimeter (Fluke 8040 A). The

continuous recording of the Pd-H versus SCE potential required a high

impedance millivoltmeter (Lazar Digital pH) connected in series with the

strip chart recorder.
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RESULTS AND DISCUSSION

Potential scan experiments at a fixed pH using various metal elec-

trodes in mildly acidic NaC10 4 solutions revealed that there is an

increase in the cathodic current when NaCOOH is added. A detailed study

of this effect on a platinum electrode at pH = 3.4 is shown in Fig. 1.

This increase in cathodic current clearly occurs at potentials positive

to the hydrogen evolution wave that begins near -0.9 V versus SCE at

this pH. The excellent correlation between the peak current and the

concentration of added NaCOOH could easily lead to the erroneous conclu-

sion that formic acid is being reduced. It is important to note that

* Fig. I shows a small reduction wave at pH = 3.4 that begins at about

-0.5 V even in the absence of any added formate.

The cyclic voltammograms in Fig. 2 show that a new reduction peak

can be produced simply by the addition of a small amount of HCIO4 to

the NaCIO 4 solution (solid line, pH = 2.21). In the near neutral solu-

tion (dotted line, pH = 6.7), no evidence of any reduction peak can be

detected; the only wave is reduction of the solvent (H 0) at the nega-
2

tive limit of the potential scan. The addition of NaCOOH to the acidi-

fied solution involves the HCOOH/HCOO equilibrium and always yields

an increase in pH and a decrease in the reduction peak. It is the addi-

tion of further HCIO4 required to restore the original pH value that is

responsible for the increase in the peak current in NaCOOH solutions
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(dashed line, pH = 2.22). This suggests that the electrode reaction is

the reduction of the added hydrogen ions that occurs at a less negative

potential than the usual hydrogen evolution reaction involving the

solvent.

The voltammograms at pH = 2.2 for HCO 4 and for HC1O4 + NaCOOH are

very similar (Fig. 2), and both show an anodic peak near -0.3 V that

could be explained by the oxidation of adsorbed hydrogen produced by the

cathodic reaction. The beginning of formic acid oxidation can be seen

in Fig. 2 near the end of the anodic sweep for the solution containing

NaCOOH. Potential scan experiments in NaC1O 4 solutions without any

formate present (Fig. 3) show an excellent correlation between the peak

current and either the concentration or the activity of hydrogen ions

in the solution. This supports the concept that the reduction peaks

observed in HCIO 4 + NaCOOH solutions (Figs. I and 2) result from the

reduction of hydrogen ions rather than formic acid molecules.

Exhaustive electrolysis experiments using constant current and

large electrodes in rapidly stirred solutions yield characteristic

inflections in potential as shown in Fig. 4. The time period required

for these inflections is mainly dependent on the amount of HCIO 4 added

to the solution. With equal amounts of added HCIO 4 (0.10 ml of 0.50 M

HCI04), the addition of NaCOOH actually decreased the inflection time

(broken line, Fig. 4) due to the HCOOH/HCOO equilibrium that decreased

the bulk concentration of hydrogen ions. If experiments are run at the
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same initial pH, the presence of NaCOOH yields much longer inflection

times than those shown in Fig. 4; these longer inflection times cor-

respond to the additional HCIO 4 required to adjust the solution back to

the initial pH. The inflections shown in Fig. 4 correspond to 0.89 e/

HCIO4 for NaCIO4 + HCIO 4 (solid line) and 0.63 e-/HC1O for NaCIO
4 4 44 4

+ HCIO4 + NaCOOH. These values are not very reproducible since they

depend on the solution stirring rate.

The simultaneous measurement of the solution pH using the Pd-H

electrode during constant current exhaustive electrolysis gave pH in-

flections near pH = 7 as illustrated in Fig. 5. The potential and pH

measurements shown in Figs. 4 and 5 involve the same experiments. The

shape of the pH curves are typical of those found in textbooks for the

titrations of strong and weak acids with a strong base. The pH inflec-

tion always came later than the inflection in potential of the working

electrode and yielded nearly 1.0 e-/HCIO4 (1.04 and 1.01 e-/HCIO for
4 4

the two curves shown in Fig. 5). The rate of transport of H3O+ to the
3

working electrode becomes the limiting factor before pH = 7 is reached;

hence, the inflection comes earlier for this electrode (Fig. 4). This

is particularly true for the HCIO 4 + NaCOOH solution due to both the

+
alerH concentration and the slower diffusion rate of HCOOH cor-

pared to H3

" - - m -l - - I i - , - " .. . ..6



The ultra-fine frit minimizes errors due to the diffusion of

hydrogen ions generated at the counter electrode into the main cell com-

partment. However, after several experimental runs, the counter elec-

trode compartment becomes very acidic (pH - 0) and lengthened inflection

times (1.2 e-/HCIO 4 ) suggest that extraneous hydrogen ions enter the

main cell compartment in measurable amounts. This error becomes negli-

gible if the counter electrode solution is replaced after each run.

The results of these investigations are in accord with the reaction

sequence

HCOOH + H0 H0 + HCOO (2)
2 3

H O+ + e - 1/2 H t + H0 (3)
3 2 2

+
where H 30 represents the hydrated proton in aqueous solutions. The

net result in that the acidic protons present as either undissociated

HCOOH or H3 0 are electrochemically reduced to form hydrogen gas. The

reactive species that is reduced is H3 0+ rather than HCOOH. Despite

being electrochemically inactive towards reduction, the formic acid

molecules, nevertheless, serve as a conveyor of protons to the electrode

surface. The positively charged proton complexed with one or more water

molecules is electrochemically reduced at a more positive potential than

neutral water molecules. Preliminary studies on indium electrodes show

results similar to those obtained with platinum electrodes; however, the

potentials for the cathodic reactions are considerably more negative due

to the higher overvoltages for the H 20 and H30+ reductions on indium

electrodes 13,14).
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The increasing cathodic currents with increasing concentrations of

formic acid (0.2 x 10-3 to 8.0 x 10-3 M) reported by Augustynski,

et al., [8,11] for TiO electrodes in N -saturated KC1 solutions are
2 2

readily explained by Eqs. (2) and (3). The increase in current reported

is due to the reduction of H30+ introduced into the solution by the

formic acid additions.

Our studies support the conclusions of Tinnemans, et al., 1101 that

neither formic acid nor formate ion is the electroactive species being

reduced. The experimental data presented by Tinnemans 1101 is also in

harmony with Eqs. (2) and (3). Obviously, surface pH and buffer

capacity are important factors in an electrode reaction that involves

the reduction of H30

These results indicate that formic acid molecules cannot effec-

$ tively compete with H 0+ for reduction in acidified solutions. This
3

is especially true at potentials negative to the zero-charge poten-

tial where the surface concentration of positively charged species is

enhanced (51. The electrode reduction of formic acid or formate ions to

methanol at practical current densities will probably require alkaline

solutions to suppress the H30+ reduction.
3

ACKNOWLEDGMENT

This work was supported by the Office of Naval Research.

L8



REFERENCES

1. K. S. Udupa, G. S. Subramanian and H. U. K. Udupa, Electrochim.
Acta, 16 (1971) 1593.

2. P. G. Russell, N. Kovac, S. Srinivasan and M. Steinberg,
J. Electrochem. Soc., 124 (1977) 1329.

3. A. V. Zakharyan, Z. A. Rotenberg, N. V. Osetrova and Yu. B.
Vasil'ev, Elektrokhimiya, 14 (1978) 1520.

4. K. Ito, S. Ikeda, T. Iida and H. Niwa, Denki Kagaku, 49 (1981) 106.

5. Y. Hori and S. Suzuki, Bull. Chem. Soc. Jpn., 55 (1982) 660.

6. B. R. Eggins and J. McNeill, J. Electroanal Chem., 148 (1983) 17.

7. S. Kapusta and N. Hackermann, J. Electrochem. Soc., 130 (1983) 607.

8. A. Monnier, J. Augustynski and C. Stalder, Book of Abstracts, 3rd.
International Conference on Photochemical Conversion and Storage of
Solar Energy, Boulder, Colorado, August 3-8, 1980, Abstract X-11,
p. 423.

9. A. Monnier, J. Augustynski and C. Stalder, J. Electroanal. Chem.,
112 (1980) 383.

10. A. H. A. Tinnemans, T. P. M. Koster, D. H. M. W. Thewissen,
C. W. De Kreuk and A. Mackor, J. Electroanal. Chem., 145 (1983)
449.

11. J. Augustynski, J. Electronanal. Chem., 145 (1983) 457.

12. E. Gileadi, E. Kirowa-Eisner and J. Penciner, "Interfacial
Electrochemistry," Addison-Wesley, Reading, Mass., 1975,
pp. 220-226.

13. M. H. Miles, J. Electroanal. Chem., 60 (1975) 89.

14. M. H. Miles and M. A. Thomason, J. Electroch-m. Soc., 123 (1976)
1459.

9

S



FIGURE CAPTIONS

Fig. 1. Potential scan experiments at 20 mV/s in 1.0 M NaCIO solu-
4

tions at pH = 3.4 and 22*C. Concentrations of added NaCOOH

were 0, 1.5, 6.0, 13, and 19.5 mM. Geometrical area of the

Pt wire electrode was 0.22 cm2 .

Fig. 2. Cyclic voltammograms at 20 mV/s in 1.0 M NaCIO solutions at
4

22*C. The dotted line is for the solution before HC104 or

NaCOOH were added, pH = 6.7. The solid line is for the solu-

tion containing added HC10 4 (0.10 ml of 0.50 M), pH = 2.21.

The dashed line is for the solution containing both NaCOOH

(0.0084 g, 2.5 mM) and HCIO 4 (0.25 ml of 0.50 M), pH 2.22.

Geometrical area of the Pt wire electrode was 0.22 cm
2.

Fig. 3. Potential scan experiments at 20 mV/s in 1.0 M NaCI0 4 solu-

tions at 22*C containing HC10 4 additions that yield pH = 3.13,

pH = 2.22 and pH = 1.95. The volumes of 0.50 M HC104 added

were 0.01 ml, 0.10 ml, and 0.20 ml, respectively. Geometrical

area of the Pt wire electrode was 0.22 cm2 .

Fig. 4. Potential-time traces for exhaustive electrolysis experiments

in stirred 1.0 M NaC104 solutions at 220 C using a large plat-

inum sheet electrode (A = 50 cm2 ) and a constant cathodic

.10



current of 5.00 mA. The solid line is for the solution con-

taining added HC10 4 (0.10 ml - 0.50 M), pH = 2.55. The

dashed line is for the solution containing NaCOOH (0.0089 g,

2.6 mM) and HCIO 4 (0.10 ml of 0.50 M), pH = 3.34. A prior

blank experiment (without any added HCIO 4 ) reached a potential

of -0.88 V within 5 seconds and contributed to higher initial

pH readings.

Fig. 5. Solution pH versus time traces for the exhaustive electroly-

sis experiments shown in Fig. 4. The Pd-H electrode potential

was measured against the SCE reference (left axis) and then

converted to pH (right axis) using Eq. (1). The solid line is

for the 1.0 M NaCO 4 solution containing added HCIO 4 (initial

pH = 2.55). The dashed line is for the NaCIO4 solution con-

taining NaCOOH (0.0089 g) and HCI0 4 (initial pH = 3.34).
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